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COMP 10261: Extracting Linguistic Knowledge 
Sam Scott, Mohawk College, 2021. 

WHAT IS LINGUISTIC KNOWLEDGE? 

Linguistic knowledge refers to knowledge that speakers of a natural language have about the 

phonology (sounds), syntax (grammar), morphology (construction of words), semantics (meaning), and 

pragmatics (non-literal use) of their language. This knowledge is often inaccessible to the speaker. We 

all know how to put together and take apart sentences in our native language without really being able 

to explain how we do it. The scientific study of language, linguistics, has yet to fully explain the nature of 

the knowledge that a person has when they know a language. We do understand a lot about how 

natural languages work, but there is much we do not understand, and this lack of understanding is a 

major barrier both to building more effective NLP and to creating Strong AI. This handout takes a quick 

look at what linguistic knowledge we can reliably extract from a text, and what we can do with it. 

For the purposes of NLP, linguistic knowledge involves tokenizing a text and then tagging it to identify 

parts of speech (nouns, verbs, etc.), key phrases, named entities, relationships between words, and 

word roots (e.g., “drinks”, “drinking”, and “drunk” are all different forms of the root word “drink”). 

Linguistic knowledge of this kind can be important for Information Extraction (IE), for question 

answering, and for processing utterances in a deeper way. We will use a rule-based approach that is 

built on top of both statistical and rule-based knowledge extraction systems.  

USING SPACY FOR LINGUISTIC KNOWLEDGE 

SpaCy (https://spacy.io/) is a Python implementation of a generic NLP pipeline with an easy-to-use API 

for extracting linguistic knowledge. It contains pre-trained language models for tagging Parts of Speech, 

Lemmas (word roots), Named Entities, and syntactic relationships. It allows you to create powerful 

Pattern Matching rules based on these tags, and it can be customized and retrained to fit specific text 

domains and to add components to the default pipeline.1  

INSTALL THE SPACY MODULE 
SpaCy is not included in Anaconda Python, but it can easily be installed from the Python shell using the 

command below. Be patient, it can take a while! 

conda install spacy 

INSTALL A LANGUAGE MODEL 
You will also need to download and install pre-trained language models for English (or for any other 

language you’re using). This is done from your operating system command line, and it requires that you 

first add Anaconda’s \Library\bin and \Scripts folders to your PATH environment variable. 

 
1 We will use the default components. You can read about custom components at https://spacy.io. 

https://spacy.io/
https://spacy.io/
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To modify the PATH variable on Windows 10… 

1. Open the Control Panel, go to System and Security, then System, then Advanced System 

Settings (or use the search bar to find “Edit the System Environment Variables”) 

2. Press the Environment Variables button, select the Path variable, and press Edit… 

3. Press New and add the Anaconda paths …\Library\bin and …\Scripts, customizing them to 

match your installation details. For example, on my machine, the correct paths are 

F:\Anaconda3\Library\bin and F:\Anaconda3\Scripts. 

4. To check that it worked, open a fresh command line window and type echo %PATH%. You 

should see the new paths you added. 

Once this is done, open a command line window on your Anaconda folder (the one that contains 

python.exe) and invoke the command shown below. 

python -m spacy download en_core_web_sm 

This downloads the “small” version of the core English language model. Once this is finished, you can 

start using spaCy, but you should get the medium, large, and transformer models as well. They take up 

more space and require more processing time, but they also contain more linguistic knowledge and can 

sometimes make more accurate predictions. 

python -m spacy download en_core_web_md 

python -m spacy download en_core_web_lg 

python -m spacy download en_core_web_trf 

THE SPACY PIPELINE 

Once spaCy and en_core_web_sm are installed, try the following in the Python shell or a script file: 

import spacy 

nlp = spacy.load("en_core_web_sm") 

This creates an English pipeline object called nlp based on the en_core_web_sm language model. Here 

is a diagram of the pipeline you get, copied from https://spacy.io.  

 

A string containing text goes in one end of the pipeline. The pipeline components separate the string 

into tokens and then annotate the tokens with various kinds of useful information. Out the other end of 

the pipeline comes a spaCy Doc object containing the original text plus all the information added by the 

various pipeline components.  

 

https://spacy.io/
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Here is an example of how to run a string through the spaCy pipeline to get a Doc object: 

doc = nlp("Twitter says the panda umbrella company is trading at 

$4.00 per share today? That’s really low!") 

If you print the doc object, the output looks just like the original string. But the string has been 

tokenized into separate words and sentences, the tokens have been tagged and parsed, a Named Entity 

Recognition (NER) module has labelled some important entities and a lemmatizer (not shown in the 

pipeline diagram above) has identified the lemma (base form) for each word. 

TOKENS 

WHAT ARE TOKENS? 
Tokens are the words, symbols, numerals, punctuation marks, and other important linguistic elements 

found in a text. A Doc object is basically a list of tokens from the original sentence. You can use the len 

function to find out how many tokens it contains, and you can iterate over it just like a list: 

doc = nlp("Twitter says the panda umbrella company is trading at 

$4.00 per share today? That’s really low!") 

 

print("The sixth token is", doc[5]) 

 

for token in doc: 

 print(token) 

If you run the above code, you will notice that not all the tokens in the output are words. In the above 

example, the token list includes non-words like 's, $, and ?.  

USING TOKENS  
Tokens represent the most basic kind of linguistic knowledge – the foundation upon which spaCy 

extracts more sophisticated knowledge.2 Once the tokens are identified, spaCy can tag them, perform 

transformations on them, and look for patterns to extract. 

In spaCy, tokens are instances of the Token class. Each Token instance contains the original text and 

index number from the document plus annotations that were added as the Doc was passed from 

component to component in the pipeline. The example below demonstrates how to extract the text and 

index number for each token in a Doc. 

for token in doc: 

 print(token.i, token.text) 

 
2 SpaCy tokens include symbols from written language that are not words and don’t really count as “linguistic 
knowledge” in the strict sense. Apologies to any linguists who might be grinding their teeth while reading this. 
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You can also get a lowercase version of a token with token.lower_ or you can find out if it’s 

lowercase with token.is_lower, find out if it’s purely alphabetic with token.is_alpha, and so 

on. For the full list of Token attributes, see https://spacy.io/api/token#attributes.  

Doc objects also support the Python slice operator (:). When you slice a Doc object you get a spaCy Span 

object that holds the Token objects you sliced out from the original Doc – example below.  

>>> span = doc[2:6] 

>>> print(span.text) 

the panda umbrella company 

UNDER THE HOOD 
Tokens are identified in a rule-based way, often with the aid of regular expressions that specify 

sequences of delimiter (separator) characters.  

For example, you could use the split function in the re or regex module to identify tokens, instructing it 

to split on any sequence of one or more whitespace characters, using r"\s+" as the delimiter expression.  

     import regex as re 

     re.split(r"\s+",doc.text) 

The result is not quite as nice as what spaCy does for us. For one thing, it leaves punctuation attached to 

words. Can you make it better? 

PARTS OF SPEECH 

WHAT ARE PARTS OF SPEECH? 
Parts of speech (POS) are categories of words like noun, verb, adjective, and adverb. A word’s POS tells 

you something about the role it is playing in the sentence. Here is a rough guide to some of the most 

important parts of speech for English. 

Part of Speech Explanation Examples 

Noun A word for a “thing” or a category of “things”. dog, number, love, unicorn, Sam 

Verb A word for an “action” or a “state of being”. run, ran, read, stops, went 

Auxiliary A “helper verb” that expresses the tense or 
mood of another verb.  

I will run, I am driving, I have 
voted  

Adjective A word that modifies a noun. green eggs, silly rabbit, huge 
teeth, invisible band aid 

Adverb A word that modifies a verb, adjective, or 
adverb. 

run slowly, speak softly, very big 
shoes, walk too quickly 

Determiner A word that goes in front of a noun to specify 
quantity or level of abstractness. 

the dog, a number, that guy, 
those birds 

Preposition A word that goes in front of a noun or noun 
phrase to show direction, time, place, location, 
etc. 

at noon, on Thursday, in 
September, under the bridge, 
over my objections, beyond a 
shadow of doubt 

https://spacy.io/api/token#attributes
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Here is an example sentence showing the parts of speech as determined by spaCy. Note that ADP stands 

for “adposition” which is what spaCy calls prepositions.  

The cat  on  the rug  quickly ate  a   big bowl of  cheerios .  

DET NOUN ADP DET NOUN ADV     VERB DET ADJ NOUN ADP NOUN     PUNCT 

Sometimes it is useful to identify phrases based on parts of speech. For example, a noun phrase is a 

noun with some other words around it that qualify or provide more information about it in some way. 

Here are some phrases from the sentence above.  

the cat on the rug     noun phrase 

on the rug       prepositional phrase 

quickly ate a big bowl of cheerios  verb phrase 

a big bowl of cheerios    noun phrase 

Every Token object in spaCy is labeled with a pos_ tag that comes from the Tagger pipeline component. 

Here is an example of how to get access to those tags. Before you run the code, see if you can predict 

the pos_ tag for each word. How many did you get right? 

doc = nlp("Twitter says the panda umbrella company is trading at 

$4.00 per share today? That’s really low!") 

 

for token in doc: 

 print(token.text, token.pos_) 

If you are not sure what a tag means, you can use the explain function to get a bit more info. 

>>> spacy.explain("PROPN") 

'proper noun' 

USING PARTS OF SPEECH 
Once you have identified the parts of speech in a document, you can look for patterns that might 

indicate a named entity or important phrase of some kind. You can also use the parts of speech to 

identify syntactic dependencies between words as well as phrases involving multiple words. This is what 

the spaCy Parser does. 

The Parser provides a rich level of syntactic information that is mostly beyond the scope of what we are 

doing here. However, one result of parsing is to tag the Doc object with simple noun phrases from the 

text. These noun phrases are useful because they often correspond to important entities. SpaCy calls 

them Noun Chunks. They are available as a generator field in the Doc object called noun_chunks. 

Generators can be used in for loops or converted to a list using the list function. 

doc = nlp("Twitter says the panda umbrella company is trading at 

$4.00 per share today? That’s really low!") 

 

for np in doc.noun_chunks: 

print(np.text, np.start, np.end, np.label_) 

 

print( list(doc.noun_chunks) ) 
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Each object in noun_chunks is a spaCy Span object. It has a text field, a start and end field that specifies 

the location of this Span’s Tokens in the original Doc object, and a label_ field that is usually set to “NP” 

(Noun Phrase). 

UNDER THE HOOD 
Part of Speech tagging is not as simple as you might think, because words can belong to different parts 

of speech depending on context. For example, you can go for a drive (noun) or you can drive (verb) a 

car. POS taggers must use the context of each word to figure out the correct part of speech.  

The first taggers used a rule-based approach to assigning parts of speech based on surrounding context. 

Modern taggers are more likely to use a statistical (“stochastic”) approach that requires a large training 

corpus (set of documents) that is has already been correctly tagged by human beings. These taggers use 

Artificial Neural Networks, Machine Learning, probabilities, and other statistical techniques to form a 

model that can predict the tags of words in sentences they have not seen before. The spaCy tagger is a 

Deep Learning (Artificial Neural Network) system based on the THiNC library (https://thinc.ai/) 

Both approaches to tagging can work well, but no matter which approach is used, no tagger is 100% 

accurate. 

NAMED ENTITIES 

WHAT ARE NAMED ENTITIES? 
Named entities are noun phrases that signify something of a predefined type: a person, an organization, 

a geopolitical entity (like a country, province, or city), a time or date, a monetary value, etc. 

The Named Entity Recognizer (NER) module in the spaCy pipeline adds any named entities it finds to the 

ents field of the Doc object (a Python tuple). As with noun_chunks, each item in the ents tuple is a Span 

object with a label_. In this case, the label_ fields indicate the type of each Named Entity. 

doc = nlp("Twitter says the panda umbrella company is trading at 

$4.00 per share today? That’s really low!") 

 

for ent in doc.ents: 

print(ent.text, ent.label_) 

If you are using the en_core_web_sm language model in version 3.0 of spaCy, the above code will show 

two entities with different labels:3  

4.00 MONEY 

today DATE 

It’s a shame that this language model fails to identify “Twitter” which is quite clearly an important 

named entity in this utterance. (Perhaps the difficulty is the way we’re using the word “Twitter”? Try 

 
3 Results may differ for other versions. Use help(spacy) to find out what version you’re running. Try this code on 
your version – what do the results look like for you? 

https://thinc.ai/


7 
 

using Twitter in different sentences to see when it gets flagged as a named entity and when it does not.) 

If you use other language models, the results will change. For example, en_core_web_trf finds the 

following entities:  

Twitter ORG 

4.00 MONEY 

today DATE 

Remember that you can use the spacy.explain function in the Python shell to get more information on 

what any label means. 

>>> spacy.explain("ORG") 

'Companies, agencies, institutions, etc.'4 

USING NAMED ENTITIES 
News organizations and other content providers can use Named Entity Recognition to tag documents 

and link together documents that mention the same entities. These tags can then be used for filtering 

document lists or for recommending similar documents to a user. Named Entity Recognition can also 

help categorize customer feedback that comes in the form of product reviews or social media posts, and 

it can be used by a chat bot to help figure out how to respond to an utterance. For example, if the user 

says, “I need to find an LCBO near the Fennel Campus”, the chat bot could recognize that LCBO and 

Fennel Campus are named entities that are both locations and could send a query to a map system to 

help answer the user’s question. 

UNDER THE HOOD 
The simplest way to identify named entities is to maintain a gazetteer – a list of names stored in an 

efficient data structure like a hash table. But this won’t work for named entities that are not known in 

advance. For unknown entities and for more difficult or variably named entities like times, dates, 

money, etc., both rule-based and statistical Machine Learning approaches achieve good results – 

almost as good as human beings. The spaCy NER module uses a kind of Artificial Neural Network called 

a Convolution Network using word embeddings – we will look at word embeddings later in the course. 

The NER component was trained using a large corpus of text with the named entities pre-labelled by 

human volunteers, but it is also able to identify likely named entities that it has never seen before. 

Even though the spaCy NER component is highly accurate, we still should not expect 100% accuracy 

from it. It will occasionally make mistakes or miss something, even when using the best language model. 

In the example from the last section, “the panda umbrella company” should probably have been 

identified as a named entity, since the author of the text clearly believes it is a real company. But since 

this company did not exist in the training data, it’s hard to recognize. 

 
4 Hmm… It’s good that this language model identified Twitter as a named entity, but does the original 

utterance really refer to Twitter the company? 
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LEMMAS 

WHAT ARE LEMMAS? 
A lemma is a root form that links together several words. For example, “drive”, “drove”, “driving”, 

“drives”, and “driven” are all different forms of the lemma “drive” and have closely related meanings. 

Linguists call this phenomenon morphology and would say that each form of the word “drive” has been 

inflected in a different way. Inflections in English can show verb tense or plurality. 

The spaCy lemmatizer adds a lemma_ tag to each token that shows the root form of the word: 

for token in doc: 

 print(token.text, token.lemma_) 

USING LEMMAS 
Lemmas allow you to get to a word’s root meaning. For example, if you are looking to extract a list of 

different kinds of vehicles that are mentioned in a document, it might be helpful to look for a rule-based 

pattern involving the lemma “drive” followed by a noun phrase (e.g., “Sam drives a car.”, “My uncle 

drove trains.”, “She had driven ATVs her entire life.”). Lemmas can also be helpful in representing text 

for statistical NLP tasks such as document classification – we will look at this later in the course. 

The usefulness of lemmas may depend on the language you’re processing. English and the other 

Germanic languages are moderately inflected – they mostly inflect nouns and verbs to show number 

and tense information. Romance languages like French also inflect adjectives and inflect for gender 

along with number and tense. Lemmatization has often proved useful for languages such as these.  

The most inflected languages are known as “polysynthetic” languages. Iroquoian languages such as 

Mohawk fall into this category. These languages are so highly inflected that a single word can carry 

enough meaning to express something that would require an entire sentence in English. Lemmatization 

might help here, but polysynthetic languages probably require a much more sophisticated approach to 

morphology and tokenization (including the use of what linguists call derivational morphology in 

addition to inflectional morphology). On the other end of the morphology spectrum, Mainland 

Southeast Asian languages like Chinese, Vietnamese, and Thai have almost no inflection on individual 

words, so we should not expect lemmas to help us much at all for these languages.5 

UNDER THE HOOD: IDENTIFYING LEMMAS 
The best approaches for identifying lemmas are rule-based. The spaCy lemmatizer uses a simple (very 

large) hash table for lookup alongside rules for words that are not in the table. For example, if a word is 

tagged as a verb and ends in “ed” but it does not appear in the hash table, then the lemmatizer can 

apply the general English rule for making a verb past tense and remove the “ed” or the “d” to take a 

reasonable guess at the correct Lemma.   

 
5 I have no direct knowledge of the languages I’m discussing here. If you speak one of these languages (or any 
other that seems interesting for this discussion) please feel free to offer corrections, context, or examples. I’ll 
incorporate your feedback into a future version of the document and credit you for the contribution. 
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EXERCISES 

In these exercises, you will use a large text document to explore the different English language models.  

1. Find a large plain text document (or use manifesto.txt from Canvas). You can read it into a single 

string and run it through the spaCy pipeline with the following: 

import spacy 

nlp = spacy.load("en_core_web_sm") 

print("language model loaded") 

 

text = "" 

with open("manifesto.txt", encoding="utf-8") as file: 

    for line in file: 

        text += line; 

print("text loaded") 

 

doc = nlp(text) 

print("pipeline finished") 

2. Python contains a set data type that implements a simple hash set. A set is like a dictionary that only 

stores keys. If you add the same key twice, you only get one copy of the key in the set. Here is a 

simple example showing how a set works: 

s = set() 

s.add("hello") 

s.add("world") 

s.add("hello") 

 

if "hello" in s: 

    print("found 'hello'") 

print( s ) 

print( len(s) ) 

Use a set to count and report the total number of unique tokens in the document as well as the total 

number of different lemmas. 

3. Use a Python dictionary to count and report the number of instances of each part of speech tag in 

the document. 

4. Identify and report the longest noun chunk and named entity in the document. You should also 

report the entity type. 

5. Now change the language model. Try the small, medium, large, and transformer models. Do you 

notice any differences in the results of exercises 1 through 4? 


