
1 
 

COMP 10261: Linguistic Pattern Matching 
Sam Scott, Mohawk College, 2021. 

A RECAP OF SPACY’S LINGUISTIC KNOWLEDGE 

The spaCy NLP pipeline converts a string of text to a Doc object. As the text goes through the pipeline it 

is split into Token objects and each Token is tagged with a part of speech, a lemma, and lots of other 

useful information (see https://spacy.io/api/token#attributes). The Doc object also gets tagged with 

information, including Span objects for named entities and noun phrases. 

Now that you have all the linguistic information from a tokenized and tagged document, you can search, 

classify, and extract information from it by defining pattern matching rules using a regular grammar.  

PATTERN MATCHING WITH SPACY 

Suppose you wanted to extract noun phrases that indicate locations from a user’s utterance, maybe to 

embed mapping or routing assistance into an email client or discord chat channel. One observation you 

might make is that the verb “to go” is often followed by a noun phrase that indicates a location. Here 

are some examples: 

1. We went to the store. 

2. Brody is going to go to a library. 

3. It all depends on whether she goes to the stadium. 

4. When are you going into that salon? 

5. They went into the red building and didn’t come out. 

6. I saw them go into the ugly, red building and then leave. 

You could probably write an ordinary regular expression that would help you capture the locations 

mentioned above, but knowing, for example, that “go”, “going” and “goes” are all different forms of the 

verb “to go” will simplify things. SpaCy identifies lemmas to help with this. Similarly, knowing that “a”, 

“the”, and “that” are all determiners will be very useful as well. SpaCy identifies parts of speech to help 

with that. 

Here is a first cut at a pattern that will match some of the sentences above. In the pattern below, you’re 

looking for a word that has the lemma “go”, followed by the word “to” and then a determiner and a 

noun: 

 

This pattern matches sentences 1, 2, and 3 above. To capture sentences 4, 5 and 6 you will have to 

figure out how to match “into” as well as “to” and expand your definition of a noun phrase to include 

adjectives. 

 

Lemma "go" "to" DET NOUN

https://spacy.io/api/token#attributes


2 
 

BASIC TOKEN MATCHING 
To create a pattern matcher, first import spaCy’s Matcher class and use it to create a Matcher instance. 

import spacy 

from spacy.matcher import Matcher 

nlp = spacy.load("en_core_web_sm") 

matcher = Matcher(nlp.vocab) 

A spaCy pattern is a list of dictionaries where each dictionary object is used to match a token. Here is a 

pattern that matches the diagram in the previous section. 

pattern = [ 

{"LEMMA": "go"},   any token that has “go” as its lemma 

{"LOWER": "to"},   any token with a lowercase form that matches “to” 

{"POS": "DET"},   any token with DET as its part of speech 

{"POS": "NOUN"}   any token with NOUN as its part of speech 
] 

You can add this pattern to the Matcher and name it “location phrase”, as shown below. Note that the 

add method requires a list of patterns, so you have to put the single pattern from above inside square 

brackets. 

matcher.add("location phrase", [pattern]) 

Now you can use the pattern to search a document for matches. In the example below, the document 

contains all 6 sentences from above. 

doc = nlp("We went to the store. Brody is going to go to a 

library. It all depends on whether she goes to the stadium. When 

are you going into that salon? They went into the red building 

and didn’t come out. I saw them go into the ugly, red building 

and then leave.") 

 

matches = matcher(doc) 

The matches variable above contains a list of tuples that indicate the id and the span of each match. As 

expected, this document contains 3 matches: 

[ 

 (1683526141385832030, 1, 5),  

 (1683526141385832030, 10, 14),  

 (1683526141385832030, 21, 25) 

] 

The long number in each tuple is the “match id” and will probably be different when you run the code 

yourself. This id is linked to the name given to this particular pattern. You can see the name like this: 

>>> nlp.vocab.strings[1683526141385832030] 

'location phrase' 



3 
 

The id is useful because you can load a single matcher with multiple patterns for different kinds of 

entities. Then the id in each tuple tells you which pattern was matched. 

The other pair of numbers defines the span of the phrase. To get the set of tokens from the third match 

above, you can create a span object like this: 

>>> phrase1 = doc[21:25] 

>>> print(phrase1.text) 

goes to the stadium 

Since you know the first two tokens in each phrase are “go” and “to” you can extract the locations like 

this: 

spans = [] 

for match_id, start, end in matches:  assigns each tuple to 3 variables 
    spans.append(doc[start+2,end]) 

print(spans) 

This prints the following: 

[the store, a library, the stadium] 

TOKEN RANGES 
To match sentence 4, you need to match “into” as well as “to”. You could use the ADP (preposition) part 

of speech here, but that might be too broad (e.g. it would match non-location phrases “I saw him go for 

the cookie” and “They went about their business”). So maybe you just want to match a few specific 

prepositions, like “to”, “into”, and “toward” – a range of tokens. This can be done with the IN operator.  

The syntax for this is a little clunky, requiring the use of nested lists and dictionaries. The rule below says 

the second token’s lowercase form can match any one several possibilities.  

pattern = [ 

{"LEMMA": "go"},   
{"LOWER": {"IN": ["to", "into", "toward"]}},   

{"POS": "DET"},   
{"POS": "NOUN"}   

] 

Making this change to the code gets you the location from the 4th sentence as well. Re-running the 

matching and extracting code yields the following: 

[the store, a library, the stadium, that salon] 

Note that the IN operator will work with LEMMA and POS as well. 

  



4 
 

REPETITION 
To match sentences 4 and 5 and other sentences like it, you need to be able to specify that there could 

be adjectives between the determiner and the noun. The problem is you do not know in advance exactly 

how many adjectives to expect, so you need to be able to specify zero or more matches. Repetition of 

this kind is done with the *, +, and ? operators you know and love from regular expressions. 

pattern = [ 

{"LEMMA": "go"},   
{"LOWER": {"IN": ["to", "into", "toward"]}},   

{"POS": "DET"},  

{"POS": "ADJ", "OP": "*"},   match 0 or more adjectives  
{"POS": "NOUN"}   

] 

This is enough to match “the red building” but it doesn’t match “the ugly, red building” because of the 

comma token. But you can fix that by allowing the comma as well, which has a POS label of PUNCT. 

pattern = [ 

{"LEMMA": "go"},   
{"LOWER": {"IN": ["to", "into", "toward"]}},   

{"POS": "DET"},  

{"POS": {"IN": ["ADJ", "PUNCT"]}, "OP": "*"}, 
{"POS": "NOUN"}   

] 

Now the pattern is extracting all 6 locations: 

[the store, a library, the stadium, that salon, the red building, 

the ugly, red building] 

WILD CARDS 
There might be some instances where you want to be able to match any token or token sequence (like 

using . or .* in a regular expression). You can do this by simply not specifying "LEMMA", "POS", 

"LOWER", or any other attribute for matching.  

{}   matches any token 

{OP="?"}  matches any token 0 or 1 times 

{OP="*"}  matches any token 0 or more times 

{OP="+"}  matches any token 1 or more times 

You should use wild cards sparingly, because they can often end up matching too much, but it is good to 

know you can do it if you need to. 

  



5 
 

ADDING MORE PATTERNS 

A single Matcher object can contain as many patterns as you like. For example, the code below will add 

a new pattern with a different name to the Matcher object from before.  

matcher.add("determiner", [[{"POS":"DET"}]]) 

Now when you run the matcher, you will get matches of type “location phrase” and “determiner” in the 

result. 

You can also add more patterns with the same name. For example, you might develop a new pattern for 

location phrases based on a different leading verb (“drive to” or “walk to”) or some other type of 

pattern.  You can add the new pattern like this: 

matcher.add("location phrase",[new_pattern]) 

Now if a phrase matches either “location phrase” pattern it will get marked as a “location phrase”. 

A REMINDER: THE LIMITATIONS OF REGULAR GRAMMARS 

You might recall from the first lesson on NLP that regular 

grammars can only be used to model the simplest types of 

formal languages. As powerful and useful as spaCy’s pattern 

matcher is, it could not be used to match even the simple, 

context-free grammar of a programming language, let alone 

model the full grammar of a natural language.  

Because of this limitation, you should not expect your patterns 

to be 100% accurate. Instead, an NLP engineer is generally 

happy when their pattern matching rules reveal some useful 

information about a document or utterance at least some of the 

time. 

FURTHER HELP 

We have covered most of the pattern matching basics here, but for more help, you can go to the spaCy 

documentation. 

https://spacy.io/usage/rule-based-matching  

https://spacy.io/api/matcher  

  

Chomsky’s hierarchy of Formal Languages. 

From bsodtutorials.wordpress.com. 

https://spacy.io/usage/rule-based-matching
https://spacy.io/api/matcher


6 
 

EXERCISES 

1. The pattern developed for locations above may be over productive. For example, it will match 

sentences like “This place is going to the dogs” or “I went to the mat for you”, neither of which 

contain location phrases. Try loading a large file of English text from https://gutenberg.org, run it 

through the matcher, and look at the phrases it identifies. How many matches did it find? How many 

of the identified phrases name locations? Can you improve the pattern based on your results? 

2. Create and test a pattern matcher to identify proper names (first and last name, first and last name 

with initial). Test it on manifesto.txt or another large file of English text from https://gutenberg.org.  

3. Write a simple bot that uses spaCy’s Matcher to identify and then ask questions about prepositional 

phrases. Here is an example of a dialog with the bot: 

USER: The cat in that big, black box was placed in the car 

BOT: What else was in a big, black box? What else was in a car? 

Hint: Match prepositional phrases using a rule similar to the one developed above. Then echo back 

the preposition that was matched, followed by “a”, followed by the noun phrase. 

4. Bruce, the automated assistant, can respond to voice commands to play any Spotify artist the user 

wants. Write a simple bot that responds to such requests with the template “Now playing ___ on 

Spotify”, where “___” is the artist requested. If the user is not asking the bot to play anything, it 

should not respond.  

Some examples of transcribed commands are given below – you should match and respond to the ✓ 

examples and not the ✗ examples. 

✓ Please play some St. Vincent 

✓ Please start playing The Beatles 

✓ I would love it if you played some Neil Young 

✗ Please tell me the weather, Bruce. 

✗ That was a terrible play dude 

5. Bruce also does simple arithmetic in response to voice commands. Some examples of transcribed 

commands are shown below. You might have to research the spaCy matcher and Python to figure 

out how to identify numbers and convert strings to numbers. How flexible can you make this 

functionality? 

USER: What’s 5 plus 7 please 

BOT: 5 plus 7 is 12 

 

USER: Tell me what 56 times 2 is 

BOT: 56 times 2 is 112 

 

USER: Compute 5 point 5 minus 5 

BOT: 5.5 minus 5 is 0.5 

  

https://gutenberg.org/
https://gutenberg.org/


7 
 

6. Bruce the assistant can also send text messages using the contacts on your phone. When it detects a 

voice command to send a message, it always responds with the recipient and the message, like this 

“Messaging Pat: You up”.  

Here is a list of transcribed voice commands. You should match and respond to the ✓ examples and 

not the ✗ examples. 

✓ Tell Prewal that I am on my way 

✓ Message Sam Scott I am going to the store. 

✗ Tell me I didn’t just do that 

✗ Tell you what I want, what I really really want 

✓ Please message my boyfriend that I love him 

✓ Tell dad I’ll meet him later 


